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Abstract

A new approach to sensitize turbulence closures based on the linear eddy-viscosity hypothesis to rotational e�ects is proposed.

The principal idea is to `mimic' the behavior of a second moment closure (SMC) in rotating homogeneous shear ¯ow; depending on

the ratio of the mean ¯ow to the imposed rotational time scales, the model should be able to bifurcate between two stable equi-

librium solutions. These solutions correspond to exponential or algebraic time dependent growth or decay of turbulent kinetic

energy. This fundamental behavior of SMCs is believed to be of importance also in the prediction of non-equilibrium turbulence. A

near-wall turbulence model which is based on the linear eddy-viscosity hypothesis is modi®ed in the present study. Wall proximity

e�ects are modeled by the elliptic relaxation approach. This closure has been successfully applied in the computation of complex,

non-equilibrium ¯ows in inertial frames of reference. The objective of the present study is to extend the predictive capability of the

model to include ¯ows dominated by rotational e�ects. The new model is calibrated in rotating homogeneous turbulent shear ¯ow

and subsequently tested in three di�erent cases characterized by profound e�ects of system rotation or streamline curvature. It is

able to capture many of the e�ects due to imposed body forces that the original closure is incapable of. Good agreement is obtained

between the present predictions and available experimental and DNS data. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: Eddy-viscosity; Bifurcation diagram; System rotation; Streamline curvature; Homogeneous turbulence; Near-wall

turbulence; Elliptic relaxation

1. Introduction

The majority of turbulent ¯ows of engineering interest are
characterized by non-equilibrium turbulence as well as by
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Notation

Cf skin friction coe�cient, sw=
1
2
qU 2

b

Cl;C�l eddy-viscosity coe�cients
f intermediate variable, Eq. (3)
h channel or step height
k turbulent kinetic energy, 1

2
uiui

L turbulent length scale, Eq. (5)
P mean pressure or mean shear generation rate

of k, Eq. (4)
P � mean reduced pressure, P ÿ 1

2
X2xixi

R non-dimensional parameter,
�����������
g2=g1

p
Rc radius of curvature
Re Reynolds number, 2hUb=m
Rem Reynolds number, d2U1=m
Re� Reynolds number, hu�=m
Ro rotation number, 2hX=Ub

S mean shear rate, �SijSij�1=2

Sij mean rate of strain tensor, 1
2
�ojUi � oiUj�

S�ij non-dimensional strain rate tensor, Eq. (10)
T turbulent time scale, Eq. (5)
Ub mean bulk velocity

Ui mean velocity in the xi-direction, �U ; V ;W �
Upw potential ¯ow mean velocity, limy!1�aU�
u� wall friction velocity, �sw=q�1=2

uiuj kinematic Reynolds stress tensor
v2 turbulent velocity scale, Eq. (3)
Wij mean intrinsic vorticity tensor,

1
2
�ojUi ÿ oiUj� � �jikXk

W �
ij non-dimensional vorticity tensor, Eq. (10)

xi Cartesian coordinate, �x; y; z�

Greek
a curvature parameter, 1� y=Rc

d2 momentum thickness
dij Kronecker delta
e dissipation rate of k
�ijk cyclic permutation tensor
gi non-dimensional velocity gradient invariant,

Eqs. (9) and (19)
Xk angular frame velocity about the xk-axis
m kinematic viscosity
mt eddy viscosity, Eq. (4)
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e�ects of inertial forces, such as arise from imposed rotation of
the reference frame, or from streamline curvature. This im-
poses high demands on turbulence models employed in CFD
codes: reliable, yet cost e�ective, ¯ow predictions are required
under complex conditions. It is therefore unfortunate that the
most commonly used closure scheme, the k±e model, su�ers
from an inability to account for crucial non-equilibrium
e�ects.

Numerous experimental and numerical investigations have
established that body forces arising from imposed system ro-
tation or from streamline curvature can substantially alter
both the mean ¯ow ®eld and the intensity and structure of the
turbulence. The most natural level of closure modeling to
adopt in these cases is Second-Moment Closure (SMC), which
in a natural and systematic manner accounts for rotation. The
potential advantage of SMC stems from the appearance of
exact production terms due to mean ¯ow gradients and system
rotation. The full SMC equations also contain convective and
dispersive transport of the second moments. This modeling
approach is physically more appealing than the eddy-viscosity
concept, but it is still not tractable in complex industrial ap-
plications, due to excessive computational cost and computa-
tional sti�ness.

Renewed attention has recently been paid to algebraic stress
modeling. This is an alternative to the full SMC, formally
justi®ed in turbulent ¯ows not too far from equilibrium. In
fact, explicit algebraic stress models (EASM) can systemati-
cally be derived by solving SMCs in the limit of equilibrium
homogeneous turbulence (Pope, 1975). In these solutions the
dependence of the Reynolds stresses on system rotation is re-
tained. Although the EASMs are based on arguments formally
valid only in equilibrium ¯ows, Speziale and Abid (1995)
demonstrated that such models could provide reasonable
predictions in some non-equilibrium ¯ows.

The most frequently adopted turbulence closures in indus-
trial computations invoke the linear eddy-viscosity hypothesis
for the mean ¯ow and scalar transport equations for the tur-
bulence ± e.g., the k±e model. An inherent shortcoming of
these models is their property of material frame indi�erence; in
other words, they are independent of imposed system rotation.
A common practice in sensitizing such models to non-inertial
e�ects is to modify the turbulent length scale by adding rota-
tion dependent terms to the dissipation rate equation (Howard
et al., 1980). Although the dissipation rate model equation is
based more on intuition than on rigorous arguments, it still
exhibits a surprising degree of generality. Therefore, there
exists a reluctance to introduce ad hoc rotation terms into the e
transport equation.

The present paper describes a rather di�erent method. A
modi®ed eddy viscosity formula is developed, guided by an
EASM solution. This formula is constrained to reduce to the
original, scalar model in non-rotating ¯ow. EASM solutions
do not satisfy this constraint. Without it, signi®cant alterations
to the original model will occur even in non-rotating ¯ows;
these can deteriorate the predictions of a well-calibrated
model.

The methodology described herein can be applied to any
scalar eddy viscosity model. We will work with the v2±f
model instead of a k±e variant. A well known failing of k±e is
that the turbulent kinetic energy k is not the appropriate
velocity scale close to solid boundaries. The k±e eddy vis-
cosity signi®cantly overpredicts turbulent transport in the
proximity of a wall. The remedy usually taken is to introduce
ad hoc damping functions. These functions frequently cause
numerical sti�ness, and give poor predictions in complex
¯ows.

Durbin (1991) proposed to replace the turbulent kinetic
energy k by a better behaved velocity scale (v2) and subse-

quently introduced the v2±f model. This model can be thought
of as a subset of a full Second-Moment Closure (SMC) in the
sense that v2 is analogous to the wall-normal Reynolds stress
near to surfaces. However, v2 is not the component of a
tensor; it is a scalar that represents an appropriate turbulent
velocity scale in the near-wall region. Kinematic blocking of
turbulent transport close to a solid boundary is provided
indirectly by solving an elliptic relaxation equation for f,
which is a source in the v2-equation. The governing set of
equations in the v2±f model is integrated all the way to the
wall.

The v2±f model has performed well in a wide number of
turbulent ¯ows, ranging from ¯at plate boundary layers to
massive separation (Parneix et al., 1998). However, it is a
scalar model, so it too exhibits material frame indi�erence.

2. Turbulence modeling

Following Pope (1975), the most general tensor function of
the mean deformation rate tensors can be written in two di-
mensions as

uiuj

k
� 2

3
dij ÿ aSij ÿ b�SikWkj ÿ WikSkj� ÿ c�S2

ij ÿ 1
3
jS2jdij� �1�

for a constant property, incompressible ¯uid. In general the
coe�cients a, b and c are functions of the invariants
jS2j � SikSki and jW 2j � WikWki, as well as of scalar properties of
the turbulence ®eld. The most frequently used constitutive
relation retains only terms up to ®rst order (b � c � 0), where
the free coe�cient is often stated as a � 2Clk=e. This formu-
lation is computationally very attractive since it promotes
numerical stability (provided that the eddy-viscosity remains
positive). The v2±f model uses

uiuj

k
� 2

3
dij ÿ 2C�l

v2

k
T Sij; �2�

where T is a turbulent time scale and the scalar v2 is obtained
from a transport equation. The introduction of v2=k in (2)
provides a measure of turbulence anisotropy, which plays a
crucial role in near-wall ¯ows.

The modeled set of transport equations for the v2±f model
are

Dk
Dt
� P ÿ e� o

oxj
�m
�
� mt� ok

oxj

�
;

De
Dt
� C�e1P ÿ Ce2e

T
� o

oxj
m

��
� mt

re

�
oe
oxj

�
;

Dv2

Dt
� kf ÿ v2

k
e� o

oxj
�m

 
� mt� ov2

oxj

!
;

f ÿ L2r2f � �C1 ÿ 1� 2=3ÿ v2=k
T

� C2

P
k
;

�3�

where

mt � C�lv2T ; P � 2mtjS2j �4�

and

L � CL max
k3=2

e
; Cg

m3

e

� �1=4
 !

;

T � max
k
e

; 6
m
e

� �1=2
� �

:

�5�
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The model coe�cients are given by

C�e1 � 1:4 1

�
� 0:045

����
k

v2

r �
; Ce2 � 1:9;

re � 1:3; CL � 0:25; Cg � 85:0; C1 � 1:4; C2 � 0:3

�6�
and the solid wall boundary conditions used in numerical
computations are

Ui � 0; v2 � 0; k � ok=oxn � 0;

fwall � lim
d!0

ÿ20m2v2

ed4

" #
:

�7�

The last limit is ®nite because v2 � O�d4� as the wall distance
d ! 0.

2.1. Modeling rotational e�ects

An inherent shortcoming of the widely used linear stress±
strain relationship (2), which limits its usefulness in many sit-
uations, is its inability to account for non-inertial e�ects on the
turbulent stresses. It should be recalled that the set of transport
equations governing turbulent scalars, such as k, e and v2, do
not directly depend on an imposed rotation of the reference
frame; the e�ect of system rotation enters only indirectly
through changes in the turbulence anisotropy and the mean
¯ow ®eld. It can, furthermore, readily be seen from (1), that
rotational strains only appear explicitly in the non-linear term
SikWkj ÿ WikSkj. The apparent conclusion would seem to be that
a non-linear constitutive relationship is needed in order to be
able to predict non-inertial e�ects within the framework of
eddy-viscosity modeling.

However, let us consider, for instance, unidirectional
channel ¯ow in orthogonal mode rotation, i.e. ~U � �U�y�; 0; 0�
and ~X � �0; 0;X�. This is a simple benchmark to assess the
performance of turbulence closures in ¯ows a�ected by rota-
tion (Launder and Tselepidakis, 1994, 1997). In this particular
case rotation a�ects the mean ¯ow ®eld only indirectly through
the turbulent shear stress u1u2. Only the second term, aSij, of
(1) contributes to u1u2. Hence, in this particular case, the e�ect
of rotation on the mean ¯ow ®eld enters the constitutive re-
lation (1) solely through the linear term. Since the mean rate-
of-strain tensor Sij is frame-indi�erent, it can be concluded that
non-inertial e�ects must be accommodated in the linear eddy-
viscosity coe�cient.

Gatski and Speziale (1993) systematically derived an ex-
plicit solution to the Algebraic Stress representation of a linear
Second-Moment Closure in a non-inertial frame of reference
by the integrity basis technique. The two-dimensional solution
is also a homogeneous, equilibrium solution to the original
SMC. Durbin and Shabany (1997) applied this technique to
the quasi-linear SSG model, in which the invariant uiuj ujui

enters a coe�cient. These solutions are necessarily of the form
(1). The coe�cient of the linear term in the explicit solution has
the form

C�l � 1� ÿ a1g1 � a2g2�ÿ1
; �8�

where the dimensionless velocity gradient invariants are

g1 � S�ikS�ik ; g2 � W �
ik W �

ik � ÿW �
ik W �

ki : �9�
Rotational e�ects thus enter the constitutive relation via g2.
The non-dimensional strain-rate and vorticity tensors are de-
®ned as

S�ik �
1

2
T

oUi

oxk

�
� oUk

oxi

�
;

W �
ik �

1

2
T

oUi

oxk

��
ÿ oUk

oxi

�
� 2Cx�kimXm

�
:

�10�

Cx depends on the constants of the closure model. The present
study adopts Cx � 2:25 which is the value obtained by Gatski
and Speziale (1993) for the SSG pressure±strain model. The
present study also replaces the turbulent timescale k=e, used by
Gatski and Speziale (1993), by T, de®ned in (5).

The objective to sensitize the scalar models to e�ects of
system rotation and streamline curvature seems possible to
achieve by following (8) and expressing the eddy-viscosity
coe�cient as a function of the non-dimensional velocity gra-
dient invariants, C�l � C�l�g1; g2�. Jongen et al. (1998) also
concluded that it was necessary to modify Cl. The present
procedure is to use the Gatski and Speziale (1993) solution for
rotating ¯ow to guide the development of this function. Ho-
mogeneous shear ¯ow will be used as a guide in the model
development, not only to calibrate model constants, but also
to ensure a physically realistic model.

2.1.1. Homogeneous ¯ow
Although homogeneous turbulence is super®cially simple, it

is believed to be a useful point of reference, even for models
primarily developed for complex ¯ows far from equilibrium.
Consider two-dimensional, homogeneous turbulent ¯ow sub-
jected to orthogonal mode rotation. In principal axes of the
rate of strain

�ojUi� � S x
ÿx ÿ S

� �
and the angular frame velocity is X. The evolution equations
for the timescale ratio e=Sk and the scalar v2=k can then be
written as

d

dr
e

Sk

� �
� P

e

�
ÿ �Ce2 ÿ 1�
�C�e1 ÿ 1�

�
e

Sk

� �2

�C�e1 ÿ 1�;

d

dr
v2

k

 !
� e

Sk
�C1

"
ÿ 1� 2

3

 
ÿ v2

k

!
� C2

 
ÿ v2

k

!
P
e

#
;

�11�

where r � St. In the present case P=e � C�lv2=k�Sk=e�2. The
non-dimensional velocity gradient invariants, given by (9), can
be expressed as

g1 � 2�Sk=e�2; g2 � 2�Sk=e�2�CxX=S ÿ x=S�2: �12�
Insight into essential parameters characterizing the turbulence
is provided by a bifurcation diagram in e=Sk ÿ g2=g1 phase-
space (Speziale and Mac Giolla Mhuiris, 1989). Eq. (11) has
two equilibria: �P=e�1 � �Ce2 ÿ 1�=�C�e1 ÿ 1� and �e=Sk�1 � 0.
At small g2=g1 the former is stable and the latter unstable. At a
certain g2=g1, a bifurcation occurs, at which the former solu-
tion disappears, and the latter becomes stable. The points in
the e=Sk ÿ g2=g1 space where these two solutions coexist are
referred to as bifurcation points. The equilibrium �e=Sk�1 6� 0
is characterized by exponential growth of k, whereas
�e=Sk�1 � 0 is associated with a power law solution for k:

�i� k � ekt; k � Ce2 ÿ C�e1
C�e1 ÿ 1

e
Sk

� �
;

Sk
e

depends on model;

�ii� k � tk; k � �P=e� ÿ 1

Ce2 ÿ 1ÿ �P=e��C�e1 ÿ 1� ;
P
e

depends on model: �13�
The bifurcation is from exponential growth to algebraic
growth. This is somewhat unusual: commonly a bifurcation is
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associated with loss of exponential stability. However, the
exponent in the power law solution is positive at the bifurca-
tion because P=e is greater than 1. When P=e becomes less than
1 the turbulence decays.

The terms in (13) that are stated to depend on the model are
found by evaluating

P=e � ÿ uiujSij

e
� e

k
a�g1; g2�g1 � 2C�lg1

v2

k
�14�

having used (1) for uiuj and (2) for the v2±f model.
Equating P=e to �Ce2 ÿ 1�=�C�e1 ÿ 1� de®nes the non-trivial

branch (i) of the bifurcation diagram. Eq. (14) then becomes

1

g1

� 2C�l
v2

k
C�e1 ÿ 1

Ce2 ÿ 1

� �
: �15�

The steady state of (11) provides the equilibrium formula

v2

k
�

2
3
�C1 ÿ 1��C�e1 ÿ 1� � C2�Ce2 ÿ 1�
�C1 ÿ 1��C�e1 ÿ 1� � Ce2 ÿ 1

�16�

that implicitly determines v2=k (with subscripts 1 under-
stood). From (16) and (6) the equilibrium values
P=e � �Ce2 ÿ 1�=�C�e1 ÿ 1� � 1:78 and v2=k � 0:367 are ob-
tained. Then (15) becomes

C�lg1 � 2:425: �17�
Inserting a given function C�l�g1; g2� de®nes the curve
g1 � Fcn�g2=g1� for branch (i) (see Fig. 1).

The variation of P=e as a function of X=S for the power law
branch (ii) is also obtained from the relation (14). On this
branch g1 !1, with g2=g1 ®nite. Since P=e is unknown, the
steady state of (11) is now written

v2

k
�

2
3
�C1 ÿ 1� � C2P=e

C1 ÿ 1� P=e

and (14) becomes

1

2

P
e

� � �C1 ÿ 1� � P=e
2
3
�C1 ÿ 1� � C2P=e

� lim
g1!1

g1C�l: �18�

The right-hand side is a function of g2=g1 (see Eq. (21)) giving
P=e � Fcn�g2=g1� for branch (ii) (see Fig. 1).

It is readily seen from Eq. (15) that the original v2±f model,
like any other eddy-viscosity model that retains a constant
coe�cient C�l � Cl, has only one equilibrium: e=Sk � constant.

This class of models has equilibria that are independent of X
and therefore never bifurcate between the solutions e=Sk 6� 0
and e=Sk � 0. This is a manifestation of their inability to dis-
criminate between stabilizing and destabilizing e�ects of a ro-
tating frame of reference.

2.1.2. A model that bifurcates
In the interest of numerical tractability and with an objec-

tive to retain the previous success of the v2±f model in com-
puting complex non-equilibrium ¯ows, the following
constraints are imposed:
1. The linear constitutive relation (2) should be retained;
2. The new model should reduce to its original form in parallel

shear ¯ow in an inertial frame of reference; i.e.,
C�l�g1 � g2� � Cl, where Cl � 0:21.
Consequently, a truncated version of the EASM (Gatski

and Speziale, 1993) cannot simply be adopted. That formula-
tion is only suited to a model based on k as the velocity scale,
and does not reduce to the standard model (Cl � 0:09) in non-
rotating parallel shear ¯ow.

The present study adopts the bifurcation diagram as the
primary tool for the model development, with the following
objectives:
1. The model should bifurcate between only two possible

stable solutions �P=e�1 � �Ce2 ÿ 1�=�C�e1 ÿ 1� and
�e=Sk�1 � 0.

2. The bifurcation diagram should exhibit a maximum value
of �e=Sk�max close to X=S � 0:5, as indicated by Rapid Dis-
tortion Theory (Sahli et al., 1997) for homogeneous shear
¯ow.

3. Restabilization, P=e < 1, should occur near to X=S � 0 and
X=S � 1 in homogeneous shear ¯ow.
In addition, the asymptotic behavior at large non-dimen-

sional strain-rates (g1; g2 � 1) should be considered because
the model is intended for complex non-equilibrium ¯ows.

It is convenient to introduce a new strain-parameter

g3 � g1 ÿ g2 �19�
which becomes identically zero in plane parallel shear in an
inertial frame of reference. Also let R2 � g2=g1. At jRj � 1,
g3 � 0 and the equilibrium solution of the original model,
�e=Sk�1 � 0:416, should be retained.

The eddy-viscosity coe�cient is written in the form

C�l
Cl
�F1F2; �20�

where F1 and F2 are introduced to separately determine the
model behavior for jRj > 1 and jRj < 1, respectively. It is
possible to separate the problem in this way if F1 and F2 take
values close to one for jRj < 1 and jRj > 1, respectively,
outside their intended regions of in¯uence.

Bifurcation occurs where branches (i) and (ii) in (13) meet.
Equating (17) to (18) gives

lim
g1!1

g1C�l � 2:425: �21�

This is implicitly the equation for the rotation rate at which the
solution bifurcates. It is an important result because it provides
the necessary condition for a model to bifurcate; it is necessary
that C�l � gÿ1

1 as g1 !1. Presently, the constraint
F1F2 � gÿ1

1 has to be met. These functions are assumed to
take the forms F1 � O�1=g� and F2 � O�1� for g!1. It
should be recalled that the constraint F1 �F2 � 1:0 when
g3 � 0 must also be satis®ed.

Since the assumed form of F1 is similar to the linear eddy-
viscosity coe�cient obtained by Pope (1975), Eq. (8) guides the
form of F1. Among many possible forms, the following rela-
tion is proposed

Fig. 1. Rotating homogeneous shear ¯ow. E�ect of di�erent model

constants in Eqs. (22) and (25) on the bifurcation diagram. In curves 1,

2 and 3 a3 � a2=2 and a4 � 1=5. R � 1ÿ CxX=S.
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F1 � 1

1� a1
�����
g2

p �����������������jg3j ÿ g3

p ; �22�

where a1 is a free coe�cient. The behavior of Eq. (22) is similar
to that of Eq. (8) when g2 � g1. The dependence on g2 is
considered to be of crucial importance since the primary ob-
jective is to sensitize the v2±f model to rotational strains. In
addition, the proposed form of F1 becomes F1 � 1 when
g3 > 0. To demonstrate the e�ect of F1, substitute (20) and
(22) into (15). Then solving for e=Sk gives

e
Sk

� �2

1
� Cl

v2

k

 !
1

C�e1 ÿ 1

Ce2 ÿ 1

� �
1
ÿ a1

2
R

������������������������������������������
1ÿR2
�� ��ÿ 1ÿR2

ÿ �q
�23�

keeping F2 � 1:0 for simplicity. Consider plane homogeneous
shear ¯ow, for which S � 1

2
oyU , x � S and

R � �1ÿ CxX=S�: �24�
Fig. 1 displays the variation of e=Sk with R for di�erent values
of a1, see curves 4, 5 and 6. F1 forces the model to bifurcate to
the trivial solution �e=Sk�1 � 0 at a value of jRj greater than
unity, but it does not a�ect the original behavior of the model
for jRj < 1. It should be recalled that �e=Sk�1 � 0:416 in Fig. 1
corresponds to the original model F1 �F2 � 1:0. The loca-
tion of the bifurcation points can thus be adjusted by varying
the free coe�cient a1; as a1 increases the bifurcation points
moves closer together. However, as will be discussed later, a
minor adjustment of F1 is necessary in order for the model to
behave properly when g1 � g2. This is believed to be impor-
tant in complex ¯ow computations in order to avoid signi®-
cantly deteriorating results obtained with the original model.

F2 was introduced to specify the behavior of the model on
the solution branch �e=Sk�1 6� 0 and to force �e=Sk�max to
occur at R � 0. R � 0 is equivalent to homogeneous plane
strain, which is known to exhibit a more rapid growth of
turbulent kinetic energy than homogeneous shear. In addition,
the constraint F2 � 1:0 at R2 � 1:0 must be imposed. The
following expression for F2 is proposed

F2 � 1� a2jg3j � a3g3

1� a4jg3j
: �25�

If a2 � a3 � a4 this yields �F2�max, and hence �e=Sk�max, at
R � 0 (g3 � g1). In addition, F2 � 1 for R2 � 1. It is neces-
sary that a36 a2 to ensure C�l P 0. Substituting (20) and (25)
into (15), keeping F1 � 1:0 for simplicity, gives the model
behavior shown in Fig. 1 for di�erent values of the free coef-
®cients, see curves 1, 2 and 3. It is thus possible to adjust the
free coe�cients such that F2 � 1 for jRj > 1 while at the same
time the model exhibits �e=Sk�max at R � 0. To demonstrate
that the present modeling strategy works, the bifurcation di-
agram using both (20) and (25) in (15) is also displayed in Fig.
1 for one set of free coe�cients. It is evident that the functions
F1 and F2 can essentially be modeled independently.

The ®nal form of the model can be written

C�l � Cl
1� a2jg3j � a3g3

1� a4jg3j

�����������������
1� a5g1

1� a5g2

s
� a1

�����
g2

p �����������������
jg3j ÿ g3

p !ÿ1

;

�26�
where the free coe�cients ai are determined with reference to
the bifurcation diagram obtained by substituting (26) into (15).
The model coe�cients are given by �a1; a2; a3; a4; a5� �
�0:055; 1

2
; 1

4
; 1

5
; 1

40
�. As mentioned above, an additional term is

added to the ®nal form of F1 to ensure a well-behaved model
when g1 >> g2; it enforces C�l � 1=

�����
g1

p
. It should be noted,

however, that the additional term a�ects the bifurcation dia-
gram only marginally because a5 � 1.

The bifurcation diagram is shown in Fig. 2. It is compared
with the EASM of Gatski and Speziale (1993) as well as with
the original model. The present model bifurcates to the trivial
solution �e=Sk�1 � 0 very close to the EASM, at R � �1:39.
This corresponds to X=S � ��1:06;ÿ0:17�. The SSG model
gives X=S � ��1:05;ÿ0:16� with Ce1 � 1:50 and Ce1 � 1:9.
The solution for the SSG bifurcation points is given in Ap-
pendix A.

However, the fact that the model bifurcates to the equi-
librium �e=Sk�1 � 0, does not directly imply restabilization of
the ¯ow. The turbulent kinetic energy decays only if P=e < 1.
For jRj > 1:39 the variation of P=e as a function of R is ob-
tained from the relation (18). (Of course P=e � 1:78 for
jRj6 1:39.) The present model predicts P=e < 1 for jRjP 1:73
corresponding to X=S � ��1:21;ÿ0:32�, as shown in Fig. 2.
This is reasonably consistent with linear stability values,
X=S � �1; 0�, for rotating plane shear ¯ow (Sahli et al., 1997).
The linearized SSG model gives stability points of
X=S � ��1:17;ÿ0:28�; the quasi-linear SSG model gives
X=S � ��1:08;ÿ0:19�. These values are found by setting
P=e � 1 in the formulae in Appendix A.

Restabilization of the ¯ow does not only occur in a rotating
frame of reference. Curvature and strati®cation are other ef-
fects for which scalar models should possess the ability of
SMCs to bifurcate. In these cases we have observed that the
bifurcation point and the point where restabilization occurs
are signi®cantly separated. The relevant criterion for cali-
brating turbulence models in these cases should therefore be
where P=e � 1 rather than where e=Sk � 0.

As an example of this di�erence in model behavior, con-
sider homogeneous shear with streamline curvature for which
g1 � 2�Sk=e�2�1ÿ n�2 and g2 � 2�Sk=e�2�1� n�2 (Holloway
and Tavoularis, 1992). Here, n � Uc=Rc=2S and Uc and Rc

denote the axial velocity at the centerline and radius of cur-
vature, respectively, and S � 1

2
oyU . The physical mechanism of

curved homogeneous ¯ow is di�erent from the rotating ¯ow in
that the equilibrium value of e=Sk is non-zero for all n6 0. The
trivial solution �e=Sk�1 � 0 exists only for n > 0: there is only
one bifurcation point. It should be recalled that n � 1 corre-
sponds to solid body rotation. The present model predicts
�e=Sk�1 � 0 for n P 0:28 whereas P=e < 1 for n > 0:59. Hence,
the curvature parameter must be more than doubled after the

Fig. 2. Rotating homogeneous shear ¯ow. Bifurcation diagrams for

the present and original v2±f model, and the EASM (Gatski and

Speziale, 1993). R � 1ÿ CxX=S.
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bifurcation has occurred before the model predicts restabili-
zation of the ¯ow.

Up to this point, the model has been calibrated in rotating
homogeneous shear ¯ow. The results suggest that (26) consti-
tutes a viable candidate for further testing in more compli-
cated, non-equilibrium ¯ows for which the model is intended
to be used. The set of free model coe�cients in (26) have been
determined in order to reproduce the behavior of SMCs in
rotating homogeneous shear ¯ows. However, in the course of
the present study it was found necessary to introduce a de-
pendence on the anisotropy parameter v2=k in (26) for wall-
bounded, non-equilibrium ¯ows where the non-dimensional
strain-parameters g1; g2 � 1. The objective is to suppress rapid
variations of C�l that can occur in the near-wall viscous region.
They have the potential to deteriorate numerical stability. This
fault is inherited from the EASM. The ®nal form of the model
coe�cients are given by

Cl � 0:21; Cx � 2:25;

a1 � 0:055
����
f1

p
; a2 � 1

2
f1; a3 � 1

4
f1;

a4 � 1

5

����
f1

p
; a5 � 1

40
;

�27�

where f1 �
�������������������������������
�v2=k�=�v2=k�1

q
. The parameter f1 becomes

f1 � 1 in homogeneous shear, so the constants determined
above retain their original values. Recall that �v2=k�1 � 0:367.

The proposed modi®cation (26) and (27) can in principle be
used in conjunction with other models, like k±e. In that case
wall damping functions, fl, would replace f1 in low Re versions.

3. Results and discussion

In order to assess the performance of the new model in
inhomogeneous turbulent ¯ows, three test cases are considered
in this section. These cases were selected with the objective to
test the model in ¯ows in which the turbulence ®eld dominates
the overall e�ect of imposed body forces. The success of the
predictions therefore relies heavily on the turbulence closure.
Model predictions are compared with available experimental
and DNS data as well as with results obtained with other
turbulence closures, in particular the original v2±f model. In
summary, the new model is given by Eqs. (2)±(6), (26) and (27)
with the solid wall boundary conditions (7).

3.1. Rotating channel ¯ow

The Coriolis body force that arises from an imposed rota-
tion of the reference frame is known to profoundly a�ect
turbulent ¯ow. Depending on the magnitude and orientation
of the rotation vector, turbulence can be enhanced or sup-
pressed. The mean ¯ow can be directly altered, or can respond
indirectly via the Reynolds stress.

The most frequently used test case for assessing turbulence
closures in a rotating frame is fully developed channel ¯ow in
orthogonal mode rotation. This con®guration has been the
subject of a number of experimental and numerical studies
(Johnston et al., 1972, 1993). Depending on the sense of ro-
tation, the pressure-driven ¯ow in a channel is subjected to
stabilization or destabilization of the turbulence; if the rotation
vector X is parallel (antiparallel) to the background mean ¯ow
vorticity, the turbulence is stabilized (destabilized). The im-
posed rotation breaks the symmetry of the ¯ow ®eld and may
eventually lead to relaminarization on the stable side of
the channel. A salient feature of this particular ¯ow is that the
rotational e�ects on the mean ¯ow ®eld enter only via
the turbulence equations.

Consider fully developed channel ¯ow where ~U �
�U�y�; 0; 0� subjected to a constant angular velocity ~X �
�0; 0;X� about the spanwise z-axis. The streamwise (x) mean
momentum equation can be written for constant density ¯ow

0 � ÿ oP �

ox
� o

oy
�m
�
� mt� oU

oy

�
; �28�

where the centrifugal force is absorbed into the mean reduced
pressure P � � P ÿ 1

2
X2�x2 � y2�. Since the mean ¯ow ®eld is

unidirectional, the continuity constraint oUk=oxk � 0 is auto-
matically ful®lled and ÿoP �=ox is a constant. Here, y � �0; 2h�
identi®es the positions of the lower and upper walls of the
channel. Model predictions are compared to the DNS data
reported by Kristo�ersen and Andersson (1993) at
Re� � hu�=m � 194 and at four di�erent rotation numbers:
Ro � 2hX=Ub � 0:0; 0:1; 0:2; 0:5. The wall friction velocity u� is
prescribed and kept constant in all the numerical computations
conducted in this study, which is consistent with the DNS.
Typically 100 grid points were used across the channel at
Re� � 194 which is su�cient to ensure a grid independent
numerical solution (Pettersson and Andersson, 1997).

The mean velocity distributions across the channel dis-
played in Fig. 3(a) show the characteristic asymmetry caused

Fig. 3. Rotating plane channel ¯ow. (a) Streamwise mean velocity scaled by Ub, (b) turbulent shear stress and (c) turbulent kinetic energy scaled by

u2
�0. Lines: present model, symbols: DNS (Kristo�ersen and Andersson, 1993).
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by the imposed rotation. The model predictions are in close
agreement with the DNS data for all Ro and it is especially
encouraging that the model is capable of reproducing the al-
most irrotational core region in which dU=dy � 2X. By com-
parison, the original model returns the same symmetric
solution (Ro � 0:0) irrespective of Ro. It should also be re-
called that the present and original models are identical at
Ro � 0:0. As Ro increases, the turbulence intensity on the
stable side of the channel is reduced, and as shown in Fig. 3(b),
the ¯ow eventually relaminarizes. The predicted turbulent
shear stress distributions, deduced from (2), are shown in Fig.
3(b). They agree well with the DNS results, although the sta-
bilizing e�ect of the imposed rotation seems to be overpre-
dicted. The asymmetry of turbulent kinetic energy k across the
channel is also well predicted by the model, except at Ro � 0:5
where k is signi®cantly overpredicted. This, however, seems
not to adversely a�ect the mean ¯ow and turbulent shear stress
distributions.

Due to the rotationally induced asymmetry of the ¯ow ®eld,
the friction velocities on the stable (u�s) and unstable (u�p) side
of the channel will depend on Ro. Table 1 displays the varia-
tion of u�p with Ro. The overall agreement with the DNS data
as well as the SMC predictions reported by Pettersson and
Andersson (1997) is good and the present model even captures
the relative reduction of u�p as Ro is increased from 0.2 to 0.5,
in agreement with the DNS results. In order to investigate the
Re e�ect on the wall friction, additional computations was
conducted at Re � 2hUb=m � 2:8� 104 for di�erent Ro. The
predictions are compared with the DNS data as well as ex-
periments (Johnston et al., 1972) and the SMC predictions
(Pettersson and Andersson, 1997) in Fig. 4. The present model
faithfully captures the observed Re dependence of the friction
velocity, namely that the e�ect of a given Ro is reduced as Re
increases. Recalling that the rotational dependence of the
model is based on g2=g1 � X=S provides an explanation for the
observed Re dependence of the wall-friction velocity: the ratio
X=S decreases in the near-wall region as Re increases for a
given frame rotation X, because the mean shear S increases.

3.2. Curved wall boundary layer

Extra strain-rates associated with streamline curvature are
probably the most common externally imposed e�ect on a ¯ow
®eld. In analogy with system rotation, an imposed curvature
can either stabilize or destabilize the turbulence. One of the
most striking e�ects is the signi®cant reduction of wall-shear
stress observed along a convexly curved surface as compared
to a ¯at plate. This is associated with a stabilization of the
turbulence. The reduced turbulence levels imply less mean
momentum transport from the free-stream towards the surface
whereby, for instance, the tendency for ¯ow separation to
occur is increased. The ability to predict the curvature induced
suppression of turbulence is relevant in many engineering
¯ows. The baseline experiments of Gillis et al. (1980) and Si-
mon et al. (1982) constitute a well suited test case. These are
experimental studies of a developing boundary layer on a

convexly curved surface with zero surface pressure-gradient.
The experimental setup consists of a developing ¯at plate
boundary layer that, at a momentum-thickness Reynolds
number Rem � 4200, enters a 90° constant-curvature bend with
d=Rc � 0:1, while the zero surface pressure-gradient is main-
tained. The boundary layer then exits onto another ¯at plate.

The equations governing the mean ¯ow ®eld are simpli®ed
here by invoking the boundary-layer approximation and are
given by

U
a

oU
ox
� V

oU
oy
� UV

aRc

� ÿ 1

a
oP
ox
� m

o2U
oy2
ÿ ouv

oy
ÿ 2uv

aRc

;

U 2

aRc

� o�P � 2
3
k�

oy
;

oU
ox
� o�aV �

oy
� 0;

�29�

where uv � ÿC�lv2T �oyU ÿ U=�aRc�� and a � 1� y=Rc. Here
�x; y� denotes the directions parallel and normal to the boun-
dary surface, respectively. �U ; V � are the mean velocity com-
ponents in the �x; y�-directions. y � 0 on the surface and Rc and
d denote the radius of surface curvature and 99% boundary
layer thickness, respectively.

In the present numerical computation, a ¯at-plate boun-
dary layer was computed downstream to Rm � 4200. Curva-
ture was then abruptly introduced by setting Rc � 10d and the
model was then integrated to a downstream distance x � 0:7 m
which coincides with the length of the bend reported in the
experiments. At x � 0:7 m, the recovery was initialized by
setting d=Rc � 0. Although these abrupt changes of surface
curvature cause discontinuities, the e�ect dies away quickly
(Durbin, 1993). The free-stream condition was oyU � ÿ1=aRc,
k � 10ÿ5U 2

1, v2 � 2
3
k and oye � oyf � 0. To ensure a su�-

ciently dense computational grid, 104 grid points were used
across the boundary layer.

Fig. 5 compares the predicted and measured skin friction
distribution, Cf=Cf0, normalized on its value at the start of the
curvature. The present model responds to the imposed convex
curvature (06 x6 0:7 m) by suppressing the turbulence in-
tensity which results in a signi®cantly reduced skin-friction.
The original model, on the other hand, reveals less sensitivity
to the imposed streamline curvature. This shortcoming is
expected since the model responds to the surface curvature

Table 1

Variation of friction velocity along the unstable side of the channel

with rotation number at Re� � 194. DNS (Kristo�ersen and Anders-

son, 1993); SMC (Pettersson and Andersson, 1997)

Ro Present DNS SMC

0.10 1.196 1.185 1.204

0.20 1.206 1.217 1.205

0.50 1.201 1.207 1.206

Fig. 4. Rotating plane channel ¯ow. E�ect of rotation on local friction

velocity u�=u�0 along the stable (y=h � 2) and unstable (y=h � 0) side of

the channel. +: Exp (Johnston et al., 1972); n: SMC (Pettersson and

Andersson, 1997); 5: DNS (Kristo�ersen and Andersson, 1993); s:

present. Open symbols Re � 6500; ®lled symbols Re � 3� 104.
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solely through the normal pressure-gradient and metric terms
that appear when the set of governing transport equations are
transformed to cylindrical coordinates. An inherent short-
coming of the eddy-viscosity modeling approach, as com-
pared to the SMC, is the lack of `memory'-e�ects; the
turbulent shear stress responds instantly to a change in cur-
vature. This is readily seen in Fig. 5, in which the SMC
prediction reported by Durbin (1993) is also shown. Both
eddy-viscosity models signi®cantly overpredict the initial re-
sponse to the curvature (06 x < 0:01 m) as well as the rate of
¯ow recovery on the ¯at-plate surface following the curved
section (x > 0:7 m).

Fig. 6 compares experimental data to the predicted mean
velocity, turbulent kinetic energy and shear stress distributions
across the boundary layer at two di�erent downstream loca-
tions: x � ÿ0:062 and x � 0:162 m. Here, k� � k=U 2

pw and
uv� � uv=U 2

pw, where Upw � limy!1�aU�. It should be noted

that the models are identical upstream of the bend (x � ÿ0:062
m). Fig. 6(a) shows that the mean velocity pro®le in the bend is
altered from its upstream shape across almost the entire
boundary layer. The experimental data, on the other hand,
only display an e�ect of curvature very close to the wall
(y=d < 0:15). This de®ciency is also present in SMC predic-
tions (Durbin, 1993). The modi®cation of the v2±f model is
only e�ective in the near wall layer where it exhibits a con-
sistent behavior with the experimental results.

The reduction of skin friction in Fig. 5 is associated with a
reduction of the turbulent shear stress. Fig. 6(b) displays re-
duced levels of the predicted uv� in the bend (x � 0:162 m). The
present model predicts a lower shear stress than the original
model but it is still signi®cantly above the data. The original
model predicts the structural parameter uv=k to be 0.3 in the
logarithmic layer both upstream the bend (x � ÿ0:062) and in
the bend (x � 0:162), whereas the present model predicts an
approximately 17% reduction in the bend. The experimental
result, on the other hand, indicates a reduction on the order of
25%. Both the present and original model predict almost the
same reduction of k� as the ¯ow enters the bend, as shown
Fig. 6(c).

Finally, recall that rotation enters the present model solely
through an e�ective mean intrinsic vorticity W �

ij (Eq. 10). This
was derived from the Reynolds stress transport equations in a
non-inertial frame of reference by Gatski and Speziale (1993).
Since the curved wall computation was performed in an in-
ertial frame, the second term in (10) is zero. However, if the
same equilibrium analysis were repeated in a cylindrical co-
ordinate system, then metric terms would arise and would
cause the angular velocity X in (10) to be replaced by ÿUc=aRc.
Such metric terms are omitted the the algebraic stress ap-
proximation. To assess the importance of curvature terms
omitted by the EASM, a computation was done in which X
was replaced by ÿUc=aRc. This is also presented in Figs. 5 and
6 As expected, the response of the model to the imposed sur-
face curvature is increased and the turbulent shear stress in the
bend is further reduced. This highlights a potential problem
with the equilibrium, algebraic stress models: they are not
coordinate system invariant. The metric and rotation terms are
derived by assuming that equilibrium is attained in a particular
coordinate system.

Fig. 5. Convexly curved boundary layer. Skin friction distribution

normalized on its value at the start of the curvature (x � 0). Lines:

Computations; ÐÐÐ : present; ÿÿÿÿ: original; ÿ � � ÿ � � ÿ: SMC

(Durbin, 1993); ÿ � ÿ � ÿ : present where X was replaced by ÿUc=aRc

in (9); � � � � � � �: ¯at plate. Symbols: Experimental data; open: Gillis et

al. (1980); ®lled: Simon et al. (1982).

Fig. 6. Convexly curved boundary layer. Predicted distribution of (a) mean velocity, (b) turbulent shear stress and (c) turbulent kinetic energy. Lines:

computations; Symbols: experiments (Gillis et al., 1980). x � ÿ0:062 m: � � � � � � �: present (and original); open symbols. x � 0:162 m (20:6� around the

bend): Ð : present; ÿÿÿÿ: original; ÿ � ÿ � ÿ : present where X was replaced by ÿUc=aRc in (9); ®lled symbols.
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3.3. Rotating backstep

The ¯ow over a backward facing step is characterized by
the simultaneous presence of high shear and streamline cur-
vature in the free shear layer immediately downstream the step.
The strained and highly turbulent ¯ow ®eld reattaches further
downstream. Rothe (1975) conducted an experimental study of
a backstep ¯ow in orthogonal mode rotation. This added the
impact of the Coriolis force on the ¯ow ®eld. The experiments
revealed a strong correlation between the imposed system ro-
tation and the reattachment length. Nilsen and Andersson
(1990) pointed out that the profound e�ects of rotation could
mainly be attributed to changes in the turbulence ®eld. The
rotating backstep di�user studied by Rothe (1975) is therefore
adopted in the present study to assess the model performance
in a complex geometry.

The backstep di�user, with the ratio of downstream chan-
nel height to the step height (h) of two, was subjected to a
constant angular velocity X about the z-axis parallel to the
step. The x and y axes correspond to the inlet ¯ow direction
and wall-normal direction in the inlet channel, respectively.
The equations governing the mean momentum and mass
continuity are

Uk
oUi

oxk
� ÿ oP �

oxi
� o

oxk
m
oUi

oxk

�
ÿ uiuk

�
ÿ 2�ijkXjUk ;

oUk

oxk
� 0

�30�

in Cartesian tensor notation. P � � P ÿ 1
2
X2�x2 � y2� is the

mean reduced pressure. The inlet condition (four step heights
upstream the step, x=h � ÿ4) was prescribed from model
computations of fully developed channel ¯ow subjected to
spanwise rotation. Fully developed outlet boundary conditions
were used at x=h � 30. A 190� 110 non-uniform grid was used
for all calculations. This has proved to be su�cient to ensure
grid independence.

Model predictions at two Reynolds numbers Re �
Ubh=m � 104; 2:8� 104 and di�erent rotation numbers
Ro � Xh=Ub are compared with the experiments. The only
experimental data reported by Rothe (1975) is the variation of
reattachment length with Ro. This makes the comparison
largely qualitative. Results obtained by Nilsen and Andersson
(1990) with a more elaborate implicit algebraic stress model
(ASM) are also included. Here, Ro > 0 is termed destabilizing
rotation since the turbulence intensity on the stepped wall
upstream the step tends to be enhanced. Ro < 0 is referred to
as stabilizing rotation.

Fig. 7 compares the predicted reattachment length as a
function of Ro with experimental and ASM results. The pre-
dictions with the present model compare well with the refer-
ence data for destabilizing rotation, although the reattachment
length in general is somewhat over predicted. The di�erences
between the present predictions and the ASM results seem
partly to be an Re e�ect. It is noteworthy that the model
captures the saturation of the rotational e�ect for su�ciently
strong positive rotation as indicated by the ASM results. The
e�ect of stabilizing rotation is, however, too strong. For
Ro < 0, the experimental results in Fig. 7 show a saturation of
the rotational e�ect on the reattachment length that is quali-
tatively di�erent from all the model predictions.

It is well known that a reduced turbulence level in the free
shear layer will cause the reattachment length to increase sig-
ni®cantly. The imposed stabilizing rotation reduces the tur-
bulence level, both along the upstream stepped wall and in the
free shear layer. However, Rothe (1975) observed that a series
of spanwise vortices persisted far downstream the step in the
free shear layer for Ro < 0. For Ro > 0, on the other hand,

three-dimensional mixing caused a breakdown of these vor-
tices immediately downstream the step. The three-dimensional
mixing is not only related to high turbulence levels caused by
destabilizing rotation, but probably also due to large-scale
rotational induced secondary ¯ow. The spanwise vortices are
believed to provide su�cient mixing in the free shear layer to
prevent the reattachment length from becoming very large.
This provides a possible explanation for the qualitative dif-
ference between the model and experimental results for Ro < 0.

Fig. 8 displays computed streamlines for di�erent rotation
numbers at Re � 104. The accompanying skin-friction distri-
bution along the bottom wall (y=h � 0) is shown in Fig. 9. The
intensity of the main recirculation region increases for desta-
bilizing rotation (Ro > 0) at the same time as its extent de-
creases. The length of the main recirculation zone is
signi®cantly increased by stabilizing rotation but its intensity
is hardly altered. Fig. 8(d) also shows that a recirculation zone
on the upper wall (y=h � 2) has developed (26 x=h6 8) at
high destabilizing rotation. It should be noted that the tur-
bulence intensity along the upper wall tends to be reduced for
Ro > 0.

Finally, it should be noted that the original v2±f model
predicts approximately the same reattachment length inde-
pendent of imposed rotation. Since this model only responds
to system rotation indirectly through changes to the mean ¯ow
®eld, it can be concluded that the strong correlation between
system rotation and reattachment length can be attributed to
changes in the turbulence ®eld. This is fully consistent with the
®ndings of Nilsen and Andersson (1990).

4. Concluding remarks

A phenomenological method to sensitize models based on
the linear eddy-viscosity hypothesis to rotational e�ects was
developed herein. The general idea is to modify the eddy-vis-
cosity coe�cient Cl by making it a function of velocity-gra-
dient invariants, with the objective to mimic the bifurcations of
an EASM. The new Cl is constrained to reduce to its original
value in parallel ¯ow, in an inertial frame of reference. Al-
though the ®nal form of the present model was not based on
formal analysis, the principal idea of the method certainly
provides a viable alternative to ad hoc Coriolis modi®cations

Fig. 7. Rotating backstep. Variation of reattachment length with im-

posed rotation. M: SMC (Nilsen and Andersson, 1990) at Re � 5500;

+: original v2±f at Re � 2:8� 104 and 
: present v2±f; open symbols

Re � 104; ®lled symbols Re � 2:8� 104. Experimental data (Rothe,

1975) 3:0� 103 < Re < 2:8� 104.
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of the dissipation rate equation. The model coe�cients were
primarily calibrated in rotating homogeneous shear ¯ow.

The methodology was applied to the v2±f model. This
model was originally developed for non-equilibrium near-wall,
but it is a scalar model, insensitive to system rotation.

Three di�erent test cases were used to assess the perfor-
mance of the model: (i) fully developed channel ¯ow in or-
thogonal mode rotation, (ii) a developing boundary layer on a
convexly curved surface and (iii) a rotating backstep di�user.
A salient feature of these test cases is that the imposed system
rotation, or streamline curvature, indirectly a�ects the mean
¯ow through changes of the turbulence ®eld. The success of the
predictions therefore depended strongly on the closure model.

The present model not only captures the augmentation/re-
duction on the unstable/stable side of a rotating channel, it
also reproduces the almost irrotational region in the channel
core where oyU � 2X. The latter e�ect seems to be closely re-
lated to stabilization in rotating homogeneous shear ¯ow: if
the model reaches the condition P=e � 1 at X=S � 1, it also
predicts oyU � 2X in the channel core. In exploratory com-
putations it was found that to some extent if restabilization is
at X=S � A then oyU � 2X=A in the core. The core hovers
around neutral stability.

Very good agreement was obtained with DNS data. Un-
fortunately, the only highly accurate reference data available
for this test case are very low Re DNS data. It is our experience
that a model that works well at low Re does not necessarily
perform equally well at higher Re. In order to further improve
the predictive capability of the present model in industrial ¯ow
computations, higher Re reference data is needed.

The prediction of ¯ow strongly a�ected by convex stream-
line curvature was also improved relative to the original model.
The signi®cant reduction of wall shear stress was captured.
However, like any eddy-viscosity model, the dynamic response
to the curvature is too prompt. A potential problem with
equilibrium algebraic stress models (ASM) for curved ¯ow was
also described: the derivation of an ASM assumes that equi-
librium is attained in a particular coordinate system. An ASM
represents an equilibrium solution of a SMC in the chosen
coordinate system, but a single ASM can not perform as well
as the SMC in a variety of rotating and curved ¯ows.

To assess the model performance in a more complex ge-
ometry, a rotating backstep was computed. The strong corre-
lation between reattachment length and imposed system
rotation was captured by the model. The original model barely
responds to the imposed rotation, which shows that rotational
e�ects enter mainly through the turbulence ®eld. Computa-
tional stability was not adversely a�ected by the new model in
any of the cases considered in this study.
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Appendix A

It is possible to solve linear and quasi-linear algebraic stress
models in closed form. The bifurcation points for the quasi-
linear SSG model are given by Durbin and Shabany (1997) as

R � �
��������������������
x2

2a2
2

ÿ a2
1

3a2
2

s
; �A:1�

where

x � c�s
2
�

���������������������������������������������������������������������
c�2s

4
� 8 �c1 � c�1P�Pÿ 1�

15P
� 4

3
a2

1

r
:

Fig. 8. Rotating backstep. Streamlines predicted by the present model.

Re � 104.

Fig. 9. Rotating backstep. Skin-friction friction coe�cient along

bottom wall predicted by the present model. Re � 104.
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R was de®ned in the text as R � CxX=S ÿ x=S. The SSG
model constants are

a1 � 0:375; a2 � 0:8; c1 � 1:7; c�1 � 0:9; c�s � 0:65;

P � P=e � �Ce2 ÿ 1�=�Ce1 ÿ 1�:
For the general linear model, c�s � 0 � c�1, this becomes

R � �
�����������������������������������������������������
�c1 �Pÿ 1��4

3
ÿ cs�

2Pa2
2

� a2
1

3a2
2

s
; �A:2�

where cs was introduced. The usual value c2 � 4=5 was used in
(A.1). Gatski and Speziale (1993) used c1 � 3:4 and cs � 0:36.

Note that bifurcation occurs at particular values of R in
any two-dimensional ¯ow. For example, rotating elliptic ¯ows
(x=S > 1) or hyperbolic ¯ows (x=S < 1) also bifurcate, ac-
cording to standard SMC models. Sahli et al. (1997) noted that
this property is not consistent with stability theory.

Formulae (A.1) and (A.2) are found by setting
P � limg1!1 g1C�l, by analogy to (21), but the explicit solution
to either the linear or quasi-linear SSG model is used for
C�l. This determines P on branch (ii). Setting P � �Ce2 ÿ 1�=
�Ce1 ÿ 1� gives the bifurcation points, and setting P � 1 gives
the stability points.
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